Kemistit rakentavat pikkuruisia nanokoneita liittämällä molekyylejä toisiinsa heikoilla sidoksilla

Haastateltavana professori Kari Rissanen Jyväskylän yliopistosta

Heikkojen sidosten avittamana molekyyleistä syntyy isohkoja, jopa nanometrien mittaisia pikkukoneita. Niissä voi olla koneiden tapaan liikkuvia osia, ja muotoon ja toimintaan on saatettu etsiä piirteitä arkipäivän tutuista laitteista kuten autoista. Nanokemian kehitystä ovat kiihdyttäneet Nobelillakin palkitut oivallukset ja tutkimuslöydöt.

Professori Kari Rissasen tutkimusryhmässä toteutettu nanokapseli.

Kemistit pystyvät nykyisin kokoamaan molekyyleistä mitä ihmeellisimpiä nanokoneita, jotka saattavat muistuttaa muodoltaan tai toiminnaltaan jopa autoa, hissiä tai asemien välillä seilaavaa sukkulaa. Nanokoneita tutkiva kemian haara on supramolekyylikemia.

”Supramolekyylikemia on avartanut perinteistä orgaanisen kemian tutkimusta. Käyttämällä hyväksi erilaisia heikkoja vuorovaikutuksia molekyylien välillä saamme ne tekemään monenlaisia toimintoja”, professori Kari Rissanen Jyväskylän yliopistosta kertoo.

Supramolekyylikemia on melko uudehko ala, jonka pioneerit Jean-Marie Lehn, Donald Cram ja Charles Pedersen palkittiin kemian Nobelilla vuonna 1987. Heistä ranskalainen Lehn otti käyttöön supramolekyylikemia-termin.

Alalle myönnettiin jo toinenkin kemian Nobel vuonna 2016, kun Jean-Pierre Sauvage, J. Fraser Stoddart ja Bernard Feringa palkittiin molekyylikoneiden kehittämisestä.

Perinteisesti kemistit ovat hyödyntäneet orgaanisessa kemiassa vahvoja eli kovalenttisia sidoksia, mutta supramolekyylikemisti käyttää hyväkseen myös vetysidoksia ja muita molekyylien välisiä heikkoja vuorovaikutuksia. Näiden heikkojen sidosten avulla molekyylejä voidaan koota suuremmiksi rakenteiksi, joissa molekyylit toimivat kollektiivina yhdessä.

”Voimme tehdä nanokokoisia molekyylirakenteita, joissa on satoja tai jopa tuhansia atomeja”, Rissanen kertoo.

”Rakenne voi olla kooltaan vaikkapa 5 x 5 x 5 nanometriä. Vertailun vuoksi aspiriinimolekyyli on huikeasti pienempi, kooltaan vain 0,15 x 0,5 x 0,6 nanometriä eli vain noin 1/25000 nanomolekyylistä”.

Kari Rissanen on käynnistänyt supramolekyylikemian tutkimuksen Suomessa, Jyväskylän yliopistossa.

Supramolekyylikemiassa on tietotaitoa karttunut jo niin paljon, että kemistit pystyvät hyvin toteuttamaan haluamiaan rakenteita.

”Kun käytämme hyväksi molekyylien itsejärjestäytymistä, voimme valmistaa suuria ja monimutkaisia rakenteita todella helposti vain sekoittamalla sopivia yhdisteitä keskenään ja luonto hoitaa loput”.
Joskus pelkkä sekoittaminen ei riitä, vaan kemisti joutuu puurtamaan pidempään ja tekemään jopa kymmenen reaktiovaihetta saadakseen aikaan monimutkaisen rakenteen. Hyvästä suunnittelusta huolimatta tulos saattaa kuitenkin yllättää kokeneenkin kemistin.
”Tämä johtuu siitä, että heikkoja vuorovaikutuksia on lähes mahdotonta hallita täydellisesti. Ne tekevät vain sen, mikä niille on luontaista ja helpointa, ja yleensä tuloksena syntyy termodynaamisesti pysyvin rakenne”.
Haastavinta kemistille on suunnitella ja tehdä rakenne, joka suorittaa haluttua tehtävää. Molekyylit voivat toimia vaikkapa on-off -kytkiminä tai avautua ja sulkeutua ulkoisen käskyn kuten valosäteilyn ohjaamana.
Kiinnostava tutkimuskohde Kari Rissasen mielestä ovat molekyylimuistit, joissa molekyyliin tai hyvin pieneen molekyylijoukkoon voidaan säilöä tietoa siten, että molekyylissä on arvoja 0 ja 1 vastaavat tilat. Sopivia rakenteita osataan jo valmistaa mutta niiden toiminnassa on yhä puutteita.
”Muistimolekyylien pysyvyys ja lukeminen ovat ongelmallisia. Vaikka käytettävä energiamäärä on hyvin pieni, yhden molekyylin lukeminen vaatii niin paljon energiaa että muistimolekyyli tuhoutuu luettaessa, eli käy kuten Mission Impossible –elokuvassa”.

Yksittäisen elävän syöpäsolun eli niin sanotun HeLa-solun sisältämä pyrofosfaatti on värjäytynyt oranssiksi pyrofosfaattisensorin vaikutuksesta. (Kuva Varpu Marjomäki ja Kari Rissanen)

Vuonna 2014 professori Kari Rissasen tutkimusryhmässä Jyväskylän yliopistossa kehitettiin maailman herkin pyrofosfaattianionin tunnistusreseptori.
Reseptori on molekyyli, joka kykenee tarkasti tunnistamaan tietyn ionin tai molekyylin. Tunnistamiseen se käyttää tarkkaa kolmiulotteista rakennettaan ja heikkoja vuorovaikutuksia. Jos kohde on ioni, reseptori kiinnittyy vain siihen mutta ei muihin läsnäoleviin ioneihin. Reseptorin toivotaan myös raportoivan tunnistuksesta eli ilmaisevan että tunnistus on tapahtunut.
”Pyrofosfaattianionin tunnistusreseptori tunnistaa syöpäsoluissa pyrofosfaatin, jonka pitoisuus on koholla. Reseptori pystyy toimimaan niin pieninä pitoisuuksina, että sitä voidaan käyttää elävissä soluissa pyrofosfaatin kuvantamiseen”, Rissanen selventää.
Professori Rissasen ryhmässä tutkitaan reseptoreja sekä kationeille, anioneille että ionipareille. Ryhmässä kehitetään myös ligandeja itsejärjestyviin molekyylirakenteisiin.
”Tavoitteemme on ligandimolekyyli, joka vuorovaikuttaa toisen molekyylin, atomin tai metallikationin kanssa niin, että niistä kollektiivina muodostuu haluttu rakenne”.
Vuonna 2017 ryhmä onnistui valmistamaan suuren nanokapselin, jonka halkaisija on 4,5 nanometriä.
”Se koostuu kuudesta samanlaisesta ligandista, jotka liittyvät toisiinsa kahdentoista metalli-ionin välityksellä. Tuloksena on heksameerinen eli kuusikomponenttinen kapseli”.

Ligandi, jota käytettiin nanokapselin valmistamiseen.

Rissasen ryhmässä tutkitaan myös kultananohiukkasten rakennetta yhteistyöprojektissa italialaisen Padovan yliopiston kanssa.
”Kultananohiukkasetkin saattaisivat kelvata lääkeaineen kuljettimeksi tai solun sisäisiksi kuvantamisaineiksi pyrofosfaatin tavoin”.
Nanomolekyylien rakenteita tutkitaan röntgensäteiden avulla, röntgensädediffraktiomenetelmällä.
”Se on edelleen tehokkain ja paras menetelmä, kun tutkitaan supra- ja nanomolekyylien rakenteita atomien tarkkuudella. Menetelmä on pysynyt samana jo 25 vuotta, mutta tänä aikana tietokoneet ja mittalaitteet ovat kehittyneet valtavasti. Kun kaksikymmentä vuotta sitten pienehkön supramolekyylin tutkiminen vei viikon tai jopa kuukausia, niin nykylaitteilla saamme tuloksen alle kahdessa päivässä”.
”Röntgensädetutkimus on kuin salapoliisityötä. Alussa emme ole varmoja, saammeko rakenteen selville, mutta nykyisin useimmiten onnistumme ja voimme lopputuloksena piirtää siitä näyttäviä kuvia”
Alla on esimerkkejä näistä näyttävistä kuvista.

Yksinkertaisen molekyylikoneen, katenaanin kiderakenne, joka kehitettiin Kari Rissasen ja edesmenneen saksalaisen professorin Fritz Vögtlen tutkimusyhteistyön tuloksena vuonna 1993.

Nanokokoinen molekyylihäkki syntyi molekyylien itsejärjestymistä käyttäen Kari Rissasen tutkimusryhmässä vuonna 2015.

Jutun toimitus Sisko Loikkanen, kuvat ja video Kari Rissanen

Strateginen liima

Suomalainen liimateollisuuden syntyhistoria liittyy vaneriteollisuuteen 1800-luvun lopulla. Kotitarveliimat ja puusepänteollisuuden käyttämät liimat keiteltiin pitkään kotioloissa.

Tärkkelysliimat olivat vielä 1960-luvulle tultaessa tavanomaisia askarteluliimoja, eivätkä vaneriteollisuuden käyttämät kasvipohjaiset tärkkelysliimat soveltuneet kuin kuivassa ilmanalassa käytettäväksi. Vaneriteollisuus käytti näiden lisäksi myös verialbumiinia, joka tunnettiin hyvin Pietarin alueen suurissa vaneritehtaissa. Venäläinen vaneriteollisuus sijoittui usein suurten teurastamoiden läheisyyteen.

Vanerin liimaustekniikka jaetaan kylmä- ja kuumaliimaukseen. Kylmäliimauksessa vanerin puristus ja liimaus tapahtuu ympäristön määräämässä lämpötilassa. Kylmäliimatut vanerilevyt vaativat noin vuorokauden vetäytymisajan paineen alaisena. Tämä menetelmä oli erityisesti venäläisten vaneritehtaiden käyttämä. Menetelmän mukana kehittyi vähitellen myös kuumentamista vaativia liima-aineita.

1920-luvulla kestävien liima-aineiden saatavuus muodostui todelliseksi ongelmaksi lentokoneteollisuuden yhteydessä. Lentokoneet valmistettiin 1940-luvulle saakka pääosin puusta ja tekstiileistä. Kaseiini eli maitopohjaiset liimat sopivat jotenkin lentokoneenrakennukseen, mutta Saksassa ja Yhdysvalloissa kehitettiin jo synteettisiä liimoja. Suomessa seurattiin kuitenkin tiiviisti keinoainepohjaisten liimojen kehitystä jo 1930-luvun alussa.

Oy Nokia Ab:n tytäryhtiö tuo markkinoille ureaformaldehydihartsiin perustuvat liima-aineet

Suurin yksittäinen kemianteollisuuden haara Suomessa oli itsenäisyyden ajan alkupuolella kumiteollisuus, jos puunjalostusteollisuutta ei lasketa mukaan. Oy Nokia Ab valmisti mm. polkupyörän ja autonrenkaita. Yhtiön tuotanto laajeni 1930-luvulla käsittämään myös muita teknillisiä kumitavaroita. Tampereella sijainneen Nokian tytäryhtiön Oy Suomen hihnatehtaat, myöhemmin Tammer Oy:n erityistuotteeksi tulivat ensimmäisenä maassa synteettiset kaurit, eli ureaformaldehydihartsiin perustuvat liima-aineet. Muita liima-aineiden valmistajia Suomessa olivat Oy Havi Ab, luuliima, Suomen Liima-ainetehdas, Oy Emulsio Ab ja Yhtyneet paperitehtaat Oy.
Muovi- ja keinoaineita valmisti lisäksi Sarvis Oy Tampereella. Vuonna 1933 Oy Hartsiteollisuus Ab käynnisti Tammisaaressa muovinpuristamon, jossa käsiteltiin bakeliittia. Tätä voitiin käyttää myös liima-aineena.
Vaikka kemianteollisuuden tuotanto kasvoi sotavuosina ja teknokemiallisen teollisuuden yritysten lukumäärä nelinkertaistui, ei tuotanto riittänyt takaamaan maan strategisen teollisuuden tarpeita. Suomi oli keinoaineiden suhteen täysin tuonnin varassa.

 

Lentokonevaneriliiman oikea käyttötapa keksittiin Suomessa vahingossa

Toiminimi Wilhelm Schauman valmisti Suomessa lentokonevaneria jo 1920-luvulla myös vientiin. Edward Wegelius kykeni kehittämään tuotetta edelleen seuraavan vuosikymmenen kuluessa. Lentokonevanerin liimauksessa käytetty Theodor Goldschmidtin kehittämä Tego-filmi oli Saksassa jätetty pois käytöstä, koska liimalla ei siellä saatu aikaan kestävää vaneria. Tego-filmin oikea käyttötapa keksittiin Suomessa vahingossa. Lentokonevanerin liimaus suoritettiin ohjeen mukaan täysin kuivilla viiluilla, mutta vaneriviilut olivat Wegeliuksen kokeissa kerran kostuneet vahingossa. Liimaus onnistui hyvin, mikä saatettiin ilmoittaa hämmästyneille saksalaisille.

Wegelius jatkoi Suomessa vaneritutkimuksiaan ja kehitti 1930-luvun lopulla koivuviilupuun, eli kolupuun joka kestää uskomattomia rasituksia. Koupuusta valmistettiin sodan aikana mm. lentokoneenpotkureita.

Kesällä 1939 käytiin kirjeenvaihtoa myös englantilaisen Aero Research Ltd:n kanssa synteettisen Aerolite-liiman ostamisesta Suomeen. Puutekniikan Kannatusyhdistys oli saanut liimasta näytteen, jolla voitiin suorittaa jonkinlaisia kokeita. Yhteys katkesi kuitenkin kokonaan sotavuosien aikana.

Yhteistyö Saksan kanssa sotavuosien aikana ei ollut avointa. Lentokoneteollisuus toimi ulkopoliittisena aseena, josta syystä koneen osien ja tietotaidon liikkumista rajoitettiin. Myös liimat olivat tarkoin varjeltuja salaisuuksia. Esimerkiksi melamiinihartsiliimaa Pressal Ka 29 saatiin Suomeen vain pieni näyte, joka ei riittänyt edes teknisen tutkimuksen tekemiseen.

 

Leijona kylmäliimaa – Liima jolla on perinteet -esittelylehtisiä. Kuva – Turun museokeskus

Kaksikomponenttiliimat jäivät suomalaiselle teollisuudelle mysteeriksi

Kaseiinin ja albumiinin saanti vaikeutui jo vuonna 1941.  USA:ssa aloitettiin aivan 1930-luvun lopussa puurakenteisten lentokoneiden rakentaminen keinohartseja käyttämällä. Tiedot tutkimuksista saatiin Suomeen Ruotsin kautta. Aluksi käytettiin kaurit-tyyppisiä liimoja, pian mukaan tulivat nykyisinkin laajalti tunnetut kaksikomponenttiliimat.

Tammer Oy kykeni jo vuonna 1943 valmistamaan suuria määriä kaurit-liimoja, mutta kaksikomponenttiliimat jäivät suomalaiselle teollisuudelle mysteeriksi. Uusien menetelmien olemassaolosta saatiin tietoja tutkimalla alasammuttuja Neuvostoliiton käyttämiä Yhdysvalloissa valmistettuja lentokoneita.

Valtion Lentokonetehdas ei kyennyt käyttämään kunnolla edes kaurit-menetelmää, koska teollisuudesta ei löytynyt riittävän suurta autoklaavia. Ainoastaan VL Myrsky-hävittäjän kuljettajan istuin kyettiin valmistamaan muottiin puristamalla.  Menetelmää kyettiin käyttämään laajemmin vasta sodan päättyessä VMT Pyörremyrsky- ja Tuuli-koneiden rakentamisessa.

 

 

Suomen Kumitehdas Osakeyhtiön Savion tuotantolaitoksen suojatekstiiliosaston tuotteita esittelemässä Yrjö Länsimäki (vas.) sekä Liima-, sively ja suojatekstiiliosaston johtaja diplomi-insinööri Runar Svensson (oik.) Kerminen, Väinö Johannes, valokuvaaja 1964 Keravan museo

 

Armi Töyrylä operoimassa liimatuubintäyttökonetta Oy Nokia Ab:n Savion tuotantolaitoksen Liima- ja sivelyosastolla marraskuussa 1970. valokuvaaja_ Kerminen, Väinö Johannes

 

Kirjoittaja: Panu Nykänen

 

Matkailu avartaa – Kemistit tiedematkailijoiden eturintamassa

Suomalaisen luonnontieteiden ja tekniikan tutkimuksen perusta rakennettiin 1850-luvun jälkeen tukevalle, kansainvälisen vertailun kestävälle pohjalle.

Aleksanteri II:n virkaan astumisen ja Krimin sodan jälkeen 1856 toistakymmentä vuotta voimassa olleet ulkomaanmatkailua rajoittaneet säädökset purettiin, ja nuoret suomalaiset tiedemiehet lähtivät joukoittain Eurooppaan. Matkat kohdistuivat etupäässä saksalaisen kielialueen tutkimuslaitoksiin ja yliopistoihin. Matkanteko oli pakko rajoittaa kesäkausiin, koska rautatieyhteydet ulkomaille syntyivät vasta 1870-luvun jälkeen ja jäätyneen Itämeren ylittäminen oli käytännössä mahdotonta ennen 1900-lukua. Lisäksi tutkijoiden viranhoito edellytti oleskelua lukukaudenaikana Helsingissä. Ainoastaan harvinaisella poikkeusluvalla saattoi jäädä talven yli ulkomaille.

Ruotsin vallan aikana yliopistotutkijoiden matkailu oli tavanomainen osa tutkimustyötä. Yhteydet Itämeren yli jatkuivat vielä autonomian ajan alussakin. J. J. Nervander ehti vielä kiertää keskieurooppalaisten instrumenttivalmistajien työpajoja 1830-luvun lopulla ennen rajojen sulkeutumista. Syynä tähän oli Venäjän pyrkimys pitää vallankumoukselliset aatteet rajojensa ulkopuolella. Poikkeuksiakin toki oli. A. E. Arppe pystyi hyvien suhteidensa vuoksi opiskelemaan 1840-luvun alussa Berzeliuksen laboratoriossa Tukholmassa. Hän vieläpä jatkoi opintojaan Mitscherlichin luona Berliinissä, Wöhlerin luona Göttingenissä ja Liebigin luona Gießenissä. Monelle muulle rajojen avautuminen merkitsi paluuta vanhaan eurooppalaiseen yliopistokulttuuriin.

 

Vuoden 1900 Pariisin Maailmannäyttelyn suuri sisääntuloportti.

Suomalaisen insinöörikunnan historian ensimmäinen virkamatka

Kemistit olivat tietenkin tiedematkailijoiden eturintamassa. Helsingin teknillisen reaalikoulun johtaja A. O. Saelan lähti ensimmäisen mahdollisuuden koittaessa kiertämään saksankielisiä maita. Hänen matkasuunnitelmansa oli kattava. Matka suuntautui nimittäin ”useampiin Saksan valtioihin”. Suomalaisen insinöörikunnan historian ensimmäisen virkamatkan aikana Saelanin matkatoverina oli vuorikonttorin ylimasuunimestari Anders Johan Wathén.
Saelanin matkan tärkein tavoite oli perehtyä Zürichissä vasta toimintansa aloittaneen uuden teknillisen oppilaitoksen (ETH) opetusohjelmaan. Vierailun seurauksena Helsingin Teknillinen reaalikoulu sai uudet säännöt joulukuussa 1858. Uudistuksella luotiin perusta Helsingin oppilaitoksen muuttumiselle teknilliseksi korkeakouluksi.
Polyteknillisen Opiston vakituiselle opettajakunnalle tiedematkailu oli 1800-luvun lopulla jopa pakollinen osa jatko- ja täydennyskoulutusta. Teknillisen koulutuksen rahoittaja Manufaktuurijohtokunta pyrki lähettämään opettajia ulkomaille mahdollisimman tasapuolisesti. Matkastipendejä jaettiin kuitenkin pääasiassa siten, että ulkomailta haettiin nopeasti kehittyvän tekniikan uusimmat virtaukset. Kysymyksessä oli harkittu teknologian siirto Venäjän keisarikunnan hyödyksi. Suomi tietenkin hyötyi valtavasti tästä politiikasta.

 

Apurahaa ulkomaan opintoihin

Vuodesta 1865 eteenpäin oli mahdollista hakea apurahaa ulkomaisissa korkeakouluissa suoritettavia opintoja varten. Varoja myönnettiin harkinnanvaraisesti, koska määräraha ei missään tapauksessa riittänyt kaikkien halukkaitten ulkomaanmatkoihin. Varakkaammat nuoret käyttivät opiskeluun omia varojaan. Esimerkiksi suomalaisen teknillisen kemian kantaisä Ernst Qvist teki lukuisat ulkomaille suuntautuvat opintomatkansa melkein kokonaan omin varoin.
Suurimmat panostukset valtio asetti luonnontieteiden kehittämiseen. 1890-luvulla Polyteknillisen Opiston 16-jäsenistä opettajakuntaa varten oli varattu 1 500 markan vuosittainen matkamääräraha. Kun yliopiston vastaava 18 000 mk:n määräraha oli tarkoitettu 75 opettajan ulkomaanmatkoja varten, oli suhde noin 2,5 kertainen yliopiston opettajakunnan hyväksi.
Polyteknillisen Opiston opettajat olivat 1800-luvun lopulle tultaessa aloittaneet säännönmukaisesti uransa saksalaiselle kielialueelle suuntautuneilla opintomatkoilla. Opintomatkailu oli viran saamisen ehdoton edellytys poikkeustapauksia lukuun ottamatta.

 

Ikuisen opiskelijan perintö

Vuodesta 1865 eteenpäin oli mahdollista hakea apurahaa ulkomaisissa korkeakouluissa suoritettavia opintoja varten. Varoja myönnettiin harkinnanvaraisesti, koska määräraha ei missään tapauksessa riittänyt kaikkien halukkaitten ulkomaanmatkoihin. Varakkaammat nuoret käyttivät opiskeluun omia varojaan. Esimerkiksi suomalaisen teknillisen kemian kantaisä Ernst Qvist teki lukuisat ulkomaille suuntautuvat opintomatkansa melkein kokonaan omin varoin.
Suurimmat panostukset valtio asetti luonnontieteiden kehittämiseen. 1890-luvulla Polyteknillisen Opiston 16-jäsenistä opettajakuntaa varten oli varattu 1 500 markan vuosittainen matkamääräraha. Kun yliopiston vastaava 18 000 mk:n määräraha oli tarkoitettu 75 opettajan ulkomaanmatkoja varten, oli suhde noin 2,5 kertainen yliopiston opettajakunnan hyväksi.
Polyteknillisen Opiston opettajat olivat 1800-luvun lopulle tultaessa aloittaneet säännönmukaisesti uransa saksalaiselle kielialueelle suuntautuneilla opintomatkoilla. Opintomatkailu oli viran saamisen ehdoton edellytys poikkeustapauksia lukuun ottamatta.

Henrik Alfred Wahlforss ja kollegat. Wahlforss kuvassa oikealla.

Matkakohteina maailman- ja teollisuusnäyttelyt

Tärkeän matkakohteen suomalaiselle virkamieskunnalle muodostivat vuoden 1851 Lontoon Crystal Palacen maailmannäyttelyn jälkeen lähes kaikissa Euroopan pääkaupungeissa tuotetut maailman- ja teollisuusnäyttelyt. Tukholmassa 1866 ja Pariisissa 1867 järjestettiin teollisuusnäyttelyt, joissa kummassakin vieraili koko joukko suomalaisia tieteentekijöitä. Polyteknillisen koulun opettajakunnasta Pariisissa kävi myös Ernst Qvist, joka matkusti jälleen omin varoin. Amerikan matkailu alkoi vuosisadan lopulla. August Fredrik Soldan oleskeli 1850-luvulla USA:ssa, mutta tämä johtui maastakarkoituksesta. Vuoden 1893 Chicagon maailmannäyttely sai virallisen vieraan Suomesta, kun C. E. Holmberg matkusti paikalle senaatin apurahan turvin.
Pariisin tunnetut suuret maailmannäyttelyt järjestettiin vuosina 1878 ja 1900. Jälkimmäiseen Polyteknillinen Opisto panosti sekä näytteillepanijana voittaen kultamitalin maailman parhaana teknillisenä korkeakouluna, että lähettämällä joukon varttuneempia opettajia opinto- ja tutustumismatkalle. Mahdollisuus valtion kustantamaan Pariisin-matkaan herätti Opiston opettajakollegiossa kiivaan taistelun matkarahoista, joita yritettiin tasata mahdollisimman monen halukkaan matkan hyväksi. Pariisissa kävi kaikkiaan yhdeksän Polyteknillisen Opiston opettajaa – noin puolet opettajakunnasta.
Gustaf Komppa toi Pariisin maailmannäyttelystä palatessaan ensimmäisen Suomessa tunnetun radioaktiivisen preparaatin.
Suomi ei suinkaan ennen ensimmäistä maailmansotaa ollut tieteen kannalta takapajuinen tai eristyksiin jäänyt maa. Ennemminkin päinvastoin. Suomalaisten tiedemiesten, kemistit mukaan luettuna toimintaympäristön horisontti oli kaukana ja kirkkaasti näkyvillä.

Suomen paviljonki Pariisin maailmannäyttelyssä vuonna 1900.

 

Kirjoittaja: Panu Nykänen

Kuvat:  Wipedia ja Finna / Museovirasto – Musketti

 

Tulta tikuista

Kemian teollisuudessa on tuotannon haaroja, joita pidetään sellaisina itsestäänselvyyksinä, että vain niiden puuttuminen osoittaa tuotteiden todellisen aseman yhteiskunnassamme. Yksi tällainen on tulitikkuteollisuus.

 

Aina 1800-luvulle saakka tulineuvoina toimivat tulukset, jotka mainitaan esimerkiksi suomalaisessa romaanikirjallisuudessa tavanomaisena työkaluna. Aina 1900-luvulle saakka pääosassa suomalaisista maataloista elettiin kuitenkin tilanteessa, jossa mähkässä palavaa hiillosta ei koskaan päästetty sammumaan. Tulta ei siis paljon sytytelty. Ranskalainen Jean Chancel keksi vuonna 1805 kastettavat tulitikut, jotka jäivät Pohjolassa kuitenkin aika vieraaksi välineeksi. Syy on selvä, Chancelin tikku sytytettiin kastamalla sytytettävä jo sinänsä myrkyllinen tikku rikkihappoon. Vuonna 1826 britti John Walker keksi raapaistavan tulitikun, joka sai nimensä Sir William Congraven mukaan.

Vasta ruotsalaisen Gustaf Erik Paschin varmuustulitikku 1844 valloitti todella maailman. Ensimmäinen varmuustulitikkutehdas aloitti toimintansa Jönköpingissä 1847. Varmuustulitikut sytytetään raapaisemalla myrkytöntä tikkua punaisella fosforilla ja lasimurskalla päällystettyä raapaisupintaa tulitikkuaskin reunassa.
Varmuustulitikkujen valmistus muodostui teollisuuden suurvalloissa tuottoisaksi suurteollisuudeksi, ja tikkujen tuotantoa ryhdyttiin verottamaan ankarasti. Tulitikkuteollisuudesta, jota verrattiin tupakkateollisuuteen, tehtiin monessa maassa valtion monopoli. Myös tulitikkuteollisuuden palovaarallisuus ja valmistusprosessien myrkyllisyys vaikutti valtion valvonnan tiivistymiseen.
Venäjällä tulitikkujen verotus aloitettiin vuonna 1848, mutta tästä seurasi huomattavan kotiteollisuuden syntyminen. Kotikemistit ryhtyivät valmistamaan tulitikkuja, samalla syntyivät valtaisat pimeät markkinat.

 

 

Vuosisadan lopussa Suomessa oli 14 tulitikkutehdasta

Myös Suomessa tulitikkuteollisuus syntyi jo 1800-luvun alkupuolella. Ensimmäiset suomalaiset tulitikkutehtaat syntyivät kotilaboratorioiden varaan ja tuotanto laivattiin usein Pietarin markkinoille.
Tuottoisa tulitikkuteollisuus pysyi pitkään vanhanaikaisena ja työntekijöille vaarallisena toimintana. Valkean fosforin käyttäminen tulitikuissa kiellettiin Suomessa vuonna 1874, useissa muissa maissa paljon myöhemmin.
Vuosisadan lopulle tultaessa Suomessa oli parhaimmillaan 14 tulitikkutehdasta. Vaikka teollisuus oli nauttinut varsin pitkälle Suomen autonomisesta asemasta johtuvasta verovapaudesta, tulitikut laskettiin ylellisyystuotteeksi tupakkavälineiden tapaan ja tikuille yritettiin määrätä valmistevero 1890-luvulla. Verotusta ei kuitenkaan saatu hyväksytyksi valtion hallinnossa. Samaan aikaan ruotsalainen tulitikkuteollisuus valtasi markkinoita omilla tuotteillaan ja suomalaisten tikkujen vienti Venäjälle lakkasi käytännössä maiden välille asetetun tullirajan vuoksi.

Ruotsi vie, Suomi taipuu

1900-luvun alussa ruotsalainen tulitikkuteollisuus rakensi Swedish Match -yhtiön Ivar Kreugerin johdolla. Kreugerin kartelli pyrki estämään kilpailevien yritysten toiminnan eri puolilla maailmaa. Kartelli osti vähitellen myös saatavilla olevat suomalaiset tulitikkutehtaat ja romutti sitä mukaan niiden laitteistot. Kerrotaan, että Kreuger sai myös Suomen hallituksen hyväksymään valmisteveron tulitikuille.
Itsenäisyyden aikana suomalainen tulitikkuteollisuus nousi kuitenkin kotimarkkinoilla muutamien vuosikymmenten aikana merkittäväksi toimijaksi, ja tulitikkurasioiden kansien keräilystä tuli postimerkkien keräilyn rinnalla merkittävimpiä harrastuksen kohteita. Viimeinen suomalainen tulitikkutehdas Vaajakoskella lopetti toimintansa vuonna 1995.
Suomessa myytävät tulitikut tehdään nykyisin Ruotsissa valmistettuja Sampo-tikkuja lukuun ottamatta halpatyövoimaa käyttäen maissa, joissa tuotanto perustuu edelleen vanhanaikaisiin koneisiin ja myrkyllisiin menetelmiin.

Kirjoittaja: Panu Nykänen

Lisää tietoa suomalaisista tulitikkutehtaista, niiden koneiden tuhoamisesta ja varastoiden polttamisesta voit lukea wipedian artikkelista.

 

Tutkijat katselevat ilmakehän molekyylitapahtumia kuin suurennuslasilla mutta lisää tutkimusta ja mittausdataa kaivataan yhä

Haastateltavana ovat professori Markku Kulmala ja professori Marja-Liisa Riekkola Helsingin yliopistosta

Ilmakehän kemia on tällä hetkellä melkoista tarkkuustiedettä. Vaikka ilman sisältämien molekyylien tekemisistä tiedetäänkin paljon, yhä lisää dataa ja pitkiä mittaussarjoja kaivataan, jotta ilmastonmuutosta ja ihmisen vaikutusta voidaan arvioida tarkemmin. Helsingin yliopiston Hyytiälän SMEAR II –mittausasemalla on tehty pitkään monitieteistä tutkimusta, jossa on selvitetty ilman fysikaalis-kemiallisia ilmiöitä, biogeenisiä yhdisteitä ja pienhiukkasia.   

Professori Markku Kulmalalla on erinomaisen hyvä näppituntuma ilmakehän kemiaan. Hän johtaa Helsingin yliopiston Ilmakehätieteiden keskusta INARia. Kuva Sisko Loikkanen

Juupajoen Hyytiälä lienee ilmaston vaikutusten osalta yksi eniten tutkittuja paikkoja maailmassa.

 

Juupajoella sijaitseva Hyytiälä on tarjonnut oivallisen ympäristön monitieteiselle tutkijajoukolle, joka on ratkonut metsien, maaperän ja kasvillisuuden vaikutusta ilmastoon. Hyytiälä lienee tässä suhteessa yksi eniten tutkittuja paikkoja maailmassa. Professori Markku Kulmala pystyy suoralta kädeltä kertomaan, kuinka molekyyleistä kehittyy siellä aerosolihiukkasia ja pilvipisaroiden tiivistymisytimiä.

”Hyytiälässä tähän ketjuun osallistuu rikkihappoa, ammoniakkia ja dimetyyliamiinia. Ensin niistä syntyy molekyyliryppäitä, ja kun mukaan tulee hapettuneita hiilivetyjä, ne kasvattavat hiukkaskoon niin suureksi että pystyvät toimimaan pilvipisaroiden tiivistymisytimenä”.

Kulmalan mukaan ilmastonmuutoksen kokonaisvaltaiseen hahmottamiseen kaivataan lisää dataa ja mittauksia globaalisti ja myös erilaisissa ympäristöissä kuten kaupungeissa. Lisäksi tarvitaan pitkiä tutkimus- ja mittaussarjoja satelliiteista, maanpinnalta käsin ja laboratorio-olosuhteissa.

Professori Markku Kulmala kertoo Hyytiälän tilanteesta ja tutkimuksen haasteista.

Ilman molekyylit tutkitaan kemian analytiikan menetelmin

Analyyttisen kemian professori Marja-Liisa Riekkola Helsingin yliopistosta tutkii ryhmineen orgaanisten ja biogeenisten haihtuvien yhdisteiden analysointia ilmanäytteistä. Kuva Linda Tammisto/Helsingin yliopisto
Professori Marja-Liisa Riekkola on yhteistyössä kahden sveitsiläisen yrityksen kanssa ja käyttää miniatyrisoituja, injektioneulaa muistuttavia SPME Arrow- ja ITEX- näytteenottimia, joiden sisältämään materiaaliin ilman yhdisteet adsorboituvat.

Adsorboiva materiaali voi olla hyvinkin selektiivinen niin että sen pintaan kiinnittyvät vain tietynlaiset yhdisteet. Yhdisteet analysoidaan kaasukromatografi-massaspektrometrillä.

Tutkimusryhmä käyttää myös näytteenottimilla varustettua kopteria, jota on lennätetty Hyytiälän ilmatilassa.

Professori Marja-Liisa Riekkola kertoo ilmanäytteiden sisältämien orgaanisten molekyylien analysoinnista.

Ilmanäyte voidaan hakea myös näytteenottimilla varustetulla kopterilla. Kuva Marja-Liisa Riekkola/Helsingin yliopisto
Jutun toimitus Sisko Loikkanen